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Is It Time to Consider Photobiomodulation
As a Drug Equivalent?
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The question of whether photobiomodulation should
be used as a drug equivalent arose in my mind after

listening to presentations at the recent conference of the World
Association for Laser Therapy (WALT)-2012 (Gold Cost
City, Australia), and later at home when searching MEDLINE�

for the years 2009–2012. Photobiomodulation (earlier terms: low
level laser therapy, LLLT, laser biostimulation) has been used in
clinical practice for > 40 years by now, and its action mechanisms
on cellular and molecular levels have been studied for > 30
years. Enthusiastic medical specialists successfully used pho-
tobiomodulation in treating healing-resistant wounds and
ulcers (e.g., chronic diabetic ulcers), in pain management, and
in spinal cord and nervous system injuries when other meth-
ods had had limited success.1 However, photobiomodulation
is still not a part of mainstream medicine. The goal of the
present Editorial is to highlight some important recent devel-
opments in clinical applications and in studies of cellular and
molecular mechanisms behind the clinical findings.

One of the impressive and perspective challenges for
photobiomodulation is its use in cases of Parkinson’s disease.
Research in recent years evidenced that neuroprotective
treatment with red and near infrared radiation (NIR) pre-
vented mitochondrial dysfunction and dopamine loss in
Parkinson’s disease patients.2 In another set of experiments,
NIR normalized mitochondrial movement and axon trans-
port, as well as stimulating respiration in cytoplasmic hybrid
(‘‘cybrid’’) neurons.3,4 It is important to recall that reduced
axonal transport contributes substantially to the degenera-
tion of neuronal processes in Parkinson’s disease.

Another development in recent years is the successful
stimulation of stem cells with red and NIR radiation. One
example is the treatment of myocardial infarction. The heart
has been considered a post-mitotic organ lacking the capac-
ity for self-renewal after injury. Surprisingly enough, human
cardiac stem cells, in combination with bone marrow mes-
enchymal stem cells, were found to reduce infarct size and
restore cardiac functions after myocardial infarction.5 This
positive effect can even be increased by irradiation of stem
cells. Mesenchymal stem cells were derived from bone
marrow and adipose tissue, and stimulated by irradiation at
k = 810 nm. Implantation of irradiated cells into the infarcted
rat heart resulted in an *50% decrease in cardiac infarct
size.6 An increase in proliferation rates and membrane po-
tential was established after 532 nm irradiation of adipose

tissue-derived stem cells.7 A recent review8 summarized data
about enhancement of the proliferation of various cultured
cell lines, including stem cells, as well as cell lines used for
the production of viral vaccines and hybrid cell lines. The
review8 underlined that photobiomodulation improves the
proliferation of cells without causing any cytotoxic effects.
One has to emphasize that laser therapy shares none of the
risks associated with stem cell therapy, requires no anes-
thesia, and is painless.9 The optimal light parameters in this
review8 were found to be as follows: doses were 0.5–4.0 J/
cm2 and wavelengths ranged from 600 to 700 nm. It is
important to recall that, in this particular wavelength
range, two peaks in absorption and action spectra con-
nected with activation of cytochrome c oxidase (the pri-
mary photoacceptor for photobiomodulation effects) are
situated.10 The peak at 620 nm belongs to reduced CuA, and
that at 680 nm, to oxidized CuB atoms in cytochrome c
oxidase molecule.11

The treatment of vitiligo (a depigmentary disorder) re-
mains a challenge for clinical dermatologists. He-Ne laser
irradiation was found to stimulate melanocyte prolifera-
tion.12 The expression of phosphorylated cyclic-adenosine
monophosphate (AMP) response element-binding protein,
an important regulator of melanocyte growth, was upregu-
lated by He-Ne laser treatment. He-Ne laser irradiation im-
parted a growth stimulatory effect on functional melanocytes
via mitochondria-related pathways.12

Irradiation with red light caused gene and noncoding
RNA regulation for photoacceptor protection in the retina.
This finding may open a new challenge for photo-
biomodulation.13

One of the major dose-limiting effects of chemotherapy
drugs is oral mucositis of treated patients. Oral mucositis can
affect up to 100% of patients undergoing high-dose chemo-
therapy and hematopoietic stem cell transplantation. Photo-
biomodulation can improve tissue repair and immune
response in these patients.14

Photobiomodulation has been shown to improve func-
tional outcome after surgical intervention to repair injured
nerves. LED irradiation at 810 nm accelerated functional re-
covery and improved the quality of nerve regeneration after
autograft repair of severely injured peripheral nerves.15

Forehead treatments with NIR reversed major depression
and anxiety.16 Transcranial NIR laser therapy was investigated
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as a new neuroprotective treatment for acute ischemic stroke.17

The authors of these studies believe that the irradiation pro-
moted functional and behavioral recovery via cellular mito-
chondrial mechanisms, as well as by enhancing cerebral blood
flow.

Photobiomodulation altered cardiac cytokine expression
following acute myocardial infarction,18 as well as protected
cardiomyocytes from hypoxia and reoxygenation injury via
nitric oxide-dependent mitochondrial mechanisms.19

The analgetic effects of photobiomodulation have been
studied for years, and are documented rather well.20 Light
treatment (k = 635 nm) of open skin wounds of corticosteroid-
treated diabetic rats was useless, as compared with nonste-
roid laser treatment, in which case a significant acceleration
of epitalization and collagen synthesis was observed.21 This
finding could probably explain why in some clinical cases
the laser treatment of wounds has a low efficiency. At the
same time, irradiation at 660 nm was effective for collagen
production in diabetic wounded fibroblasts.22

I will conclude by discussing ‘‘mitochondrial mechanisms
of photobiomodulation,’’23 the term used widely in recent
years for molecular and cellular mechanisms of light action.
The rather old suggestion10,11 that the photoacceptor for
photobiomodulation effects is cytochrome c oxidase has been
confirmed by now.24 The new data25 support the old con-
clusion that photobiomodulation is more pronounced in ill
or otherwise stressed cells, as compared with healthy cells
with plenty of oxygen available.26 The terminal enzyme of
the mitochondrial respiratory chain and its electronic exci-
tation by light with proper parameters causes retrograde
light-sensitive cellular signaling events to transport the light
signal from mitochondria to the nucleus to cause gene ex-
pression.27 The gene expression events caused by irradiation
are confirmed, and have been studied in more detail in recent
years.28,29
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